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1. INTRODUCTION

Measurement of the apparent laminar regression or burning rate for liquid propellants has

been investigated extensively over the past forty years as documented in McBratney,

Bensinger, and Arford (1976); McBratney (1981); Vosen (1989); and Lee, Tseng, and Faeth

(1989). For these studies, the burning rates were deduced from strand burner or atomized

spray experiments for pressures up to 100 MPa, with the majority of experiments performed at

pressures below 50 MPa (McBratney, Bensinger, and Arford 1976; Vosen 1989; Lee, Tseng,

and Faeth 1989). In addition, in order to moderate surface turbulence, several of the

experiments were performed with "gelled" propellants, in which the neat liquid propellant was

modified with additives to increase viscosity. Unfortunately, the effect of the gelling agents on

the combustion chemistry and burning rate of liquid propellants is not known (Vosen 1989).

Of current interest is the liquid gun propellant LGP 1846, which is being utilized by the

U.S. Army in the development of a regenerative liquid propellant gun (RLPG) for use with the

next generation artillery howitzer. Klein (1990) has provided a summary of the combustion

process. He explains that the HAN-based liquid propellants contain water, hydroxylammonium

nitrate, NH30HNO 3 (HAN), and the nitrate salt of an aliphatic amine (AAN). The AAN salt

used in LGP 1846 is triethanolammonium nitrate, (HOCH 2CH 2)3NHNO 3 (TEAN). Combustion

of the HAN-based propellants is sequential. When reaction is initiated, the HAN component

decomposes generating heat and various gases. The AAN is not chemically changed but is

converted to fine, molten salt droplets that are dispersed in the HAN decomposition gases.

Ignition is observed when the AAN droplets become involved, and reaction and their rates are

such that the amount of energy released is sufficient to at least sustain the reaction sequence.

Combustion, the third and final phase, accounts for the majority of the energy released by the

propellant.

Figure 1, from the report by Lee, Tseng, and Faeth (1989), presents the currently known

information on the burning rates for LGP 1846 and LGP 1845, a mixture containing 2% less

water. Vosen (1989) attributes the increased burning rates obtained in his study to surface

instabilities. Although the burning rates recorded by Lee, Tseng, Faeth, and McBratney

(2% gel) are consistent, the pressure range is limited, 0.7-7 MPa for Lee et al. and



1000

o DATA LGP.184S PRESENT WORK
4 DATA LGP.1846VOSEN
A DATA LaWIo4 MCRDATNEY

AA
0, A

10- 0 0 0

0 1 10 100 240

PRESSURE (MPa)

Figure 1. Apparent Burning Rates for LGP 1845 and LGP 1846 (Lee and Faeth 1989).

10-60 MPa for McBratney. Above 60 MPa, the bum rates by McBratney show a substantial

increase.

The objectives of the present work are as follows: Without the addition of a "gelling" agent

to the propellant (1) determine apparent laminar regression or burn rate for LGP 1846 at gun

pressures, particularly in the range of 50-200 MPa; (2) determine the effect on burn rate

resulting from conditioning the propellant to 600 C and -250 C; (3) determine if the sharp break

in bum rate measured by McBratney at approximately 60-100 MPa for LGP 1845 is present

for LGP 1846; and (4) determine the effect of using the measured burn rates in interior

ballistic performance codes.
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2. EXPERIMENTAL FIXTURE AND BURN RATE ANALYSIS

In order to obtain bum rate information for LGP 1846 at elevated pressures, a series of

dosed chamber experiments was performed. A schematic of the clost. chamber is shown in

Figure 2. Total chamber volume Is 73 cm3, arK the sample holder volume is 24.4 cm3 . To

prevent contamination of the liquid propellant the sample holder is coated with silicon. The

Igniter Is DuPont IMR 4350 packaged in cellophane with ignition initiated by an electric match.

Pressure-time data are recorded on a model 2092 Nicolet oscilloscope which is connected to

the closed chamber via a Kistler model 504E charge amplifier and Kistler model 607C4

pressure transducer.

TRANSDUCER IGNITER ASSEMBLY

PORT

S 24 mm

SAMPLE
HOLDER -

f, 43 mm

INSER-

Figure 2. Closed Chamber Schematic.
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The experimental closed chamber data are reduced to apparent bum rates using the

BRLCB (Oberte and Kooker 1989) dosed chamber data analysis program. The analysis is

based upon a Nobel-Abel covolume equation-of-state,

P V n Im -(C -m) R T,P(-1i-±2,,) m (1)

where P is pressure, V the free volume of the dosed chamber, -q the propellant covolume, m

the mass of propellant burned, C the total propellant mass, p the propellant density, R the

Universal Gas constant, M the propellant molecular weight and Ta the average gas

temperature. Using a thermochemical code such as BLAKE (Freedman 1982), il and M are

calculated based upon the chemical composition of the propellant. Density, p, is a

measurable time-independent quantity which is dependent on the propellant composition.

Finally, the volume, V, and total charge mass, C, are measurable parameters for each

experimental firing. Hence, Equation 1 has three undetermined quantities, P, Ta, and m.

However, conservation of energy,*

me, - Q,, (P) uT m c', (2)

where es is the specific internal energy of the propellant, Qw(P) a heat-loss function dependent

on pressure, and Cv the specific heat at constant volume, provides a second coupled equation

to Equation 1. Thus, using the measured pressure at each time step, Equations 1 and 2 can

be solved simultaneously for m and T,.

Utilizing a numerical differentiation scheme, the time rate of change of the mass

propellant, dm/dt, is computed for each time step. The bum rate at each time step is then

computed using,

dm/dt r = ,(3)
pA

where r is the apparent bum rate and A the instanteous reacting surface area which is based

upon the propellant geometry. However, since a liquid has no fixed geometry, for the data

reduction it is assumed that propellant burning will proceed in a cigarette fashion down the

For simplicity, igniter material and air in the chamber are not included.
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sample holder, Figure 2. Thus, the reacting surface area, A. for these calculation is constant

and is the cross-sectional area of the sample holder.

Computed bum rates are taditionally plotted on a log-log scale as a function of pressure.

A typical plot from this study is shown in Figure 3. Three distinct bum rate regions are

evident-(1) a linear region up to about 100 MPa, (2) a second linear region from

approximately 100 to 150 MPa, and (3) a region of sharp rise and fall in the bum rate (from

point A forward). This last region is not thought to represent the actual bum rate but is a

result of a "mismatch" in the amount of propellant surface area which is actually reacting vs.

that which is used to compute the bum rate, Equation 3. This type of behavior in computed

bum rates has been observed before in solid propellants which deconsolidate or have win-

depth" burning (Leveritt 1981).

One final comment on the bum rate calculation. As mentioned previously, the reacting

surface area is assumed to be fiat and equal to the cross-sectional area of the sample holder,

Figure 4a. However, it is generally accepted (McBratney 1976; Vosen 1989; Leveritt 1990;

and Klein 1990) that the regressing propellant surface will not be flat but undulating or

turbulant as depicted in Figure 4b. If this is the case, then the actual reating surface area will

be greater than the surface area assumed in the bum rate computation, Equation 3.

Therefore, since the bum rate is inversely proportional to the value of the reacting propellant

surface area, the computed bum rates could be higher than the true LGP 1846 burn rates. In

this study, the computed bum rates can be higher than the actual bum rates, but not lower.

3. FIRING MATRIX

A total of 29 firings were used for the study. The firings were divided into four categories

with the following objectives: (1) igniter study, to determine the effect that initial pressure will

have on liquid propellant bum rate; (2) loading density study, to determine if the bum rate is

dependent on initial loading density (loading density is the ratio of propellant mass to chamber

volume); (3) conditioned cold, to determine the effect on bum rate of liquid propellant

conditioned to -25' C; and (4) conditioned hot, to determine the effect on bum rate of liquid

propellant conditioned to 600 C. Table 1 summarizes the firing matrix.

5
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Figure 3. Typical Bum Rate vs. Pressure Plot.
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Figure 4. Schematic of Possible Propellant Reacting Surface.
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Table 1. Firing Matrix

Shot No. Igniter Igniter LGP LoadingMass Press Mass Densi y

(g) (MPa) (g) (g/cm)

Igniter Study:

1 4.7 70 16.6 0.23
2 6.8 105 14.1 0.19
3 8.7 138 11.7 0.16
4 10.6 172 9.4 0.13
5 12.4 207 7.3 0.10

Loading Density Study:

6-9 2.8 26 11.0 0.15
10-12 2.8 30 14.6 0.20
13-15 2.8 35 18.3 0.25
16-18 2.8 40 21.9 0.30

Conditioned Cold (-25* C):

19-24 2.8 40 21.9 0.30

Conditioned Hot (600 C):

25-29 2.8 40 21.9 0.30

4. RESULTS

Figure 5 is the pressure-time data recorded for shot number 7 and is typical, in shape, for

all firings (1-12) with a loading density for the liquid propellant of up to about 0.25 g/cm3 .

The curve has the following three distinct regions: (1) -0.04 s to -.006 s, where the pressure

rises to about 30 MPa which is approximately the pressure due to the igniter;

(2) -0.006 s to 0.04 s with a pressure rise from 30 MPa to approximately 52 MPa; and

(3) 0.04 s to 0.08 s with a pressure rise from 52 MPa to 132 MPa. It is interesting to note that

the time duration for the second region is slightly longer than that of region three, .046 s to

.04 s, yet has a pressure rise of only 22 MPa compared to the 80 MPa for region three.

Region two may be indicative of the time associated with accumulation which has been noted

in modeling liquid propellant combustion (Coffee, Wren, and Morrison 1989, 1990; Coffee,

Baer, Morrison, and Wren 1989). Analyses of pressure histories in liquid propellant gun firings

7
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Figure 5. Pressure-Time Data, Shot No. 7.

have indicated that LGP 1846 releases only a portion of its energy during the initial pressure

and temperature rise in the combustion chamber (Coffee 1986). The time associated with the

transition to rapid and complete combustion has been termed the accumulation phase and is

generally associated with the pressure rise to approximately 50 MPa.

Figure 6 is the calculated bum rate associated with the pressure-time curve of Figure 5.

The portion of the curve between points A and B corresponds to the pressure region from

approximately 52 MPa to 132 MPa. The near vertical rise in the computed bum rate between

A and B is probably not indicative of the actual bum rate of LGP 1846 but indicates that a

significately larger surface area of the propellant was reacting than used in Equation 3 for the

bum rate computation. This result is consistent with experimental observation for combustion

of LGP 1846 at low loading densities. Klein (1991) has proposed that the sensitivity of burn

rate to loading density is related to the decomposition process of the liquid propellant. A

higher loading density provides a higher gas concentration from the initial HAN decomposition.

The subsequent gas/liquid (AAN droplets) reaction is a function of the amount and

concentration of gases in the gas phase. As mentioned previously, the pressure-time histories

8
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Figure 6. Apparent Burn Rate, Shot No. 7.

and, hence, the bum rate curves for firings 1 through 12 are similar in shape to Figures 5

and 6, although they do differ in timing. Thus, for this study it is felt that no meaningful

information concerning the bum rate for LGP 1846 can be obtained from firings 1-12.

However, Figures 7 and 8 present the corresponding information for shot number 24,

which is typical for firings (13-29) with liquid propellant loading density 0.25 g/cm 3 and above.

The curve consists of two regions-(1) -0.10 s to -0.05 s with a pressure rise to about

35 MPa, approximately the igniter pressure and (2) -0.05 s to 0.30 s with a typical closed

chamber pressure curve to about 260 MPa. The pressure-time profile of Figure 7 produces

the apparent bum rate information shown in Figure 8, which appears to provide meaningful

results up to about 180 MPa.

9
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5. BURN RATE CALCULATIONS (AMBIENT TEMPERATURE) AND COMPARISONS
WITH EARLIER WORK

Based upon the discussion of the previous section, for the calculation of a bum rate at

ambient temperature, the results from the 0.3 g/cm3 loading density, firings 16-18, will be

utilized. The "meaningful" portion of the computed bum rate curves for firings 16-18 are

shown in Figure 9. As can be observed, two of the three firings produce *similar* curves. The

bum rate at ambient temperature for LGP 1846 will be based upon these two curves. One

additional observation, Figure 10, is a log-log graph of pressure vs. bum rate for shot

number 16. As observed in the McBratney, Bensinger, and Arford (1976) results for NOS

propellant, there appears to be a change In slope for the bum rate at about 100 MPa, as

indicated by the straight lines on the bum rate curve. Similar slope changes are present in all

the firings-ambient, conditioned hot, and conditioned cold- performed at the 0.3 g/cm 3

loading density and for several firings at lower loading d-nsities.

Table 2 presents the combined computed bum rate law for the data from shots number 16

and 17, the two lower curves in Figure 9. The bum rate law is given in r = bPn form, with r

having units in centimeters per second. Table 3 provides the bum rate information for the

LGP 1845 McBratney (1981) strand burner data and combined bum rate information provided

by Vosen (1989) for the McBratney, Vosen, and Lee data (McBratney, Bensinger, and Arford

1976; Vosen 1989; Lee, Tseng, and Faeth 1989).

Table 2. Bum Rates for LGP 1846 at a 0.3-g/cm 3 Loading Density in the Form r = bPn

Pressure Range Coefficient (b) Exponent (n)
(MPa) (cm/s-MPa)

75-101 0.0024 1.67
101-190 0.000548 1.99

11



Loading Density 0 3 g/cc

Ambient Temperature

E

() 20

D

-J 2-

2 . a 2 1 a 210 1

Log Pressure (MP9)
Figure 9. Bum Rate Results for Id = 0.30 q/cm3.

25

(n

2 20E
()

) 15
0

S10

C2

0 5.

100
Log Pressure (MPa)

Figure 10. Bum Rate for Shot Number 16 With Slope Break.
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Table 3. Bum Rate Information by McBratney and Vosena in the Form r = bPn

Pressure Range Coefficient (b) Exponent (n)
(MPa) (cm/s-MPa)

McBratney:
10-60 1.64 0.103

Vosen:
1-100 0.945 0.237

a Coffee, Wren, and Morrison 1989; Vosen 1989.

The most obvious difference between the data in Tables 2 and 3 is the magnitude of

pressure exponent. However, considering the different pressure regimes, a direct comparison

may not be valid, except possibly in the 60-70 MPa region. The McBratney strand burner

data indicates a distinct increased slope (pressure exponent) (see Figure 1) for the

measurements at 80 and 95 MPa. McBratney did not include these points in his bum rate law

computation. Although Vosen, in computing the bum rate law to 100 MPa, did include the two

data points by McBratney at 80 and 95 MPa, this was the only burning rate data for pressures

above 60 MPa and no special consideration was given to the increased slope indicated by

these two data points.

A comparison of the bum rates from 60 to 70 MPa, possibly a valid regime for

extrapolation for the bum rates computed in this study, indicates reasonable agreement with

earlier work (see Table 4).

Table 4. Comparison of Computed Bum Rates Between 60 and 70 MPa

I? r
Bum Rate, Burn Rate, Burn Rate,

Pressure Present Study McBratney Vosen
(MPa) (cm/s) (cm/s) (cm/s)

60 2.24 2.50 2.49
65 2.56 2.52 2.54
70 2.89 2.54 2.59

13



6. BURN RATE CALCULATIONS FOR TEMPERATURE-CONDITIONED PROPELLANT

Firings 19 to 24 were performed with the liquid propellant conditioned to a temperature of

-250 C and firings 25 to 29 with the propellant conditioned to a temperature of +60 C.

Loading density in all firings is 0.3 g/cm3. Computed bum rates for these firings are presented

in Table 5.

Table 5. Bum Rates for LGP 1846 Conditioned to -250 C and +600 C Temperatures,
at a 0.3-g/cm3 Loading Density of in the Form r = bPn

Pressure Range Coefficient (b) Exponent (n)
(MPa) (cm/s-MPa)

Conditioned -250 C:
75-100 0.139 0.848
100-200 0.0218 1.25

Conditioned +6W0 C:
65-100 0.00132 1.87

100-220 0.00018 2.3

Figure 11 shows a comparison of the bum rates for the temperature-conditioned and

ambient firings. The measured bum rates for the conditioned-cold and ambient firings are

similar while the rate for the conditioned-hot propellant is substantially higher.

7. INTERIOR BALLISTIC CALCULATIONS

In the regenerative liquid propellant gun, a liquid jet is introduced into the combustion

chamber through an annulus where it undergoes a complex series of steps including breakup

and combustion. These processes are not well understood and have not successfully been

resolved into component processes. However, recent work with a lumped parameter code

(Coffee, Wren, and Morrison 1989, 1990; Coffee, Baer, Morrison, and Wren 1989) has shown

that a theoretical model of jet breakup into droplets in combination with a pressure-dependent

bum rate for the liquid droplets provides good agreement with 30-mm, 105-mm, and 155-mm

experimental data. The current burn rate used in the code is the McBratney measured burn

14
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rate shown in Table 3. It has previously been recognized that an increase in bum rate may

occur for pressures above about 80 MPa, and the influence of higher bum rates in model

results is of interest.

For solid propellants, temperature conditioning has a marked effect on pressure with

variations of up to 15% in maximum pressure. It is of interest to determine if the same
response of the propellant is observed with liquid propellants. Thus, a two-part bum rate was

added to the interior ballistic model (Coffee 1990) as shown in Table 6. The McBratney data
are used for ambient, cold, and hot conditions up to 65 MPa. The bum rates determined from

the current set of firings is used for pressures above 65 MPa for the respective conditions.

Table 6. Burn Rates Used in Interior Ballistic Calculations

Pressure Range Coefficient (b) Exponent (n)
(MPa) (cm/s-MPa)

0-65 1.64 0.103

ambient > 65 0.000548 1.99
cold > 65 0.0218 1.25
hot > 65 0.00018 2.3

A comparison of the model at ambient conditions with experimental mean chamber

pressure is shown in Figure 12 for a 155-mm, 5-liter charge firing. In Figure 13, a comparison

of model results using the derived ambient, cold, and hot burning rates is shown. The general

observation from Figures 12 and 13 is that at pressures above 65 MPa the energy release is

primarily governed mechanically by the injection rate as opposed to the burning rate. Thus,

the current burn rates make little difference in model results compared to the experiment.

However, the cold and hot conditioning of the propellant may affect the discharge

coefficients from the reservoir and the damper. The model will need to consider the

combination of altered discharge coefficients and altered burn rates to make a meaningful

statement about gun performance at temperature extremes.

16
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8. CONCLUSIONS

In this study, samples of LGP 1846, without gelling, were fired in a dosed chamber to

pressures up to 200 MPa. The firings were performed under various loading densities, igniter

pressures, and temperature conditioning. Computed bum rate laws, r = bPs, resulted in

higher than expected exponents, approximately 2.0. It Is possible that the large exponent is a

result of the assumption concerning the reacting propellant surface area, which is

underestimated if the rtacting surface is undulating or turbulent However, in a limited

pressure range (60-70 MPa) where extrapolation of the results from this work and previous

studies may be valid, reasonable agreement in burning rates is obtained. The bum rate

results for the temperature-conditioned propellant Indicate that when conditioned hot the burn

rate is substantially higher than the computed bum rate of the propellant at ambient

temperature. If conditioned "cold," the computed bum rate is slightly lower than the bum rate

at ambient. Finally, interior ballistic calculations show that the interior ballistic process above

65 MPa is primarily injection controlled rather than controlled by the burning rate of the

propellant.

9. FUTURE WORK

Additional work is needed to accurately measure bum rates of liquid propellant at elevated

pressures (100-400 MPa). Visualization at these pressures would allow more accurate

determination of reacting surface area. In addition, interior ballistic codes of the regenerative

liquid propellant gun process should consider the effect of temperature on the discharge

coefficient.
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BURN RATE-vs.-PRESSURE PLOTS
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BURNING RATE ANALYSIS
BRLCB V1.0

ADVANCED BALLISTIC CONCEPTS BRANCH - BRL

Project: Liquid Propellant Requested by: William Oberle
Data File: e:lp25.INF Created From .MAS File: Ipcold.MAS
Fired on: By:
Reduced on: By:

Igniter Information
The Igniter Used Is: IMR 4350 Lot: Unknown
The Source or the Igniter Is: LP Team

Igniter Thermochemical Properties
Impetus (J/g) • 994.1 Molecular Weiiht : 23.78800
Flame Temperature (K) : 2844.0 Covolume (cm /g) : 1.03685
Density (g/cm3) : .94500 Gamma : 1.24560

Propellant Information
The Propellant Used Is: LP1 846 Lot: 1846-05
The Source for the Propellant Is: LP Team

Propellant Thermochemical Properties
Impetus (J/g) • 900.2 Molecular Weight • 22.84900
Flame Temperature (K) : 2578.0 Covolume (cm /g) • .66700
Density (g/cm3) :1.45200 Gamma 1.22210

Propellant Grain Geometry
Grain Type: Cigarette

Length (cm): 2.742211
Outer Diam. (cm): 2.700020
Perf Diam. (cm): .000000
Inner Web (cm): .000000
Outer Web (cm): .000000

Bomb Information Gage Information
Bomb Type: Closed Chamber Gage I.D.: C1 1281
Bomb Vol. (cm3): 73.0 Input Voltage: 4.5850

Constants for Fit: A+Bx+C 2

A: .30451E+00
B: .53151E-01
C: -.10918E-06

Temperature and Charge Mass Information
Propellant Mass (g): 22.8008 Igniter Mass (g): 2.8118
Initial Temp. Prop. (K): 294 Initial Temp. Igniter (K): 294
Initial Bomb Temperature (K): 294
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Table C-1. Bum Rate (cm/s) vs. Pressure (MPa) for Shot 16, Ambient Temperature

Pressure__ Rate Pressure Rate Pressure Rate

76.000 3.665 140.000 12.586 204.000 29.983

80.000 3.373 144.000 12.700 208.000 32.750

84.000 4.042 148.000 12.395 212.000 35.016

88.000 4.491 152.000 13.287 216.000 38.338

92.000 4.514 156.000 14.383 220.000 41.238

96.000 5.109 160.000 15.627 224.000 41.074

100.000 5.213 164.000 15.754 228.000 41.761

104.000 6.011 168.000 16.039 232.000 40.879

108.000 6.138 172.000 17.344 236.000 42.440

112.000 6.588 176.000 18.426 240.000 40.539

116.000 8.206 180.000 18.391 244.000 38.900

120.000 8.337 184.000 18.355 248.000 35.107

124.000 8.884 188.000 20.524 252.000 32.444

128.000 8.975 192.000 23.137 256.000 27.466

132.000 9.752 196.000 25.089 260.000 19.411

136.000 11.246 200.000 27.818 264.000 11.155

88



BURNING RATE ANALYSIS
BRLCB V1.0

ADVANCED BALLISTIC CONCEPTS BRANCH - BRL

Project: Liquid Propellant Requested by: William Oberle
Data File: e:lp32.INF Created From .MAS File: Ipcold.MAS
Fired on: 23 May 90 By: Newberry & Aungst
Reduced on: 9 June 90 By: William Oberle
Reduction Remarks:

Conditioned to 244 K for 60 min.

Igniter Information
The Igniter Used Is: IMR 4350 Lot: Unknown
The Source for the Igniter Is: LP Team

Igniter Thermochemical Properties
Impetus (J/g) • 994.1 Molecular Weight : 23.78800
Flame Temperature (K) : 2844.0 Covolume (cm /g) : 1.03685
Density (g/cm3) : .94500 Gamma : 1.24560

Propellant Information
The Propellant Used Is: LP1 846 Lot: 1846-05
The Source for the Propellant Is: LP Team

Propellant Thermochemical Properties
Impetus (J/g) • 900.2 Molecular Weight : 22.84900
Flame Temperature (K) : 2578.0 Covolume (cm"/g) : .66700
Density (g/cm3) :1.45200 Gamma : 1.22210

Propellant Grain Geometry
Grain Type: Cigarette

Length (cm): 2.742211
Outer Diam. (cm): 2.700020
Perf Diam. (cm): .000000
Inner Web (cm): .000000
Outer Web (cm): .000000

Bomb Information Gage Information
Bomb Type: Closed Chamber Gage I.D.: C1 1632
Bomb Vol. (cm3): 73.0 Input Voltage: 4.8530

Constants for Fit: A+Bx+C 2

A: .12701E+01
B: .52094E-01
C: -.16385E-06

Temperature and Charge Mass Information
Propellant Mass (g): 22.8008 Igniter Mass (g): 2.8123
Initial Temp. Prop. (K): 244 Initial Temp. Igniter (K): 294
Initial Bomb Temperature (K): 294
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Table C-2. Bum Rate (cm/s) vs. Pressure (MPa) for Shot 23, Conditioned Cold

Pressure Rate Pressure Rate Pressure Rate

80.000 5.300 136.000 11.665 192.000 15.574

84.000 6.239 140.000 13.061 196.000 14.069

88.000 6.076 144.000 13.400 200.000 15.735

92.000 7.043 148.000 12.147 204.000 16.478

96.000 6.984 152.000 14.174 208.000 14.860

100.000 7.481 156.000 14.675 212.000 14.053

104.000 7.797 160.000 13.605 216.000 14.670

108.000 7.968 164.000 14.401 220.000 14.607

112.000 7.461 168.000 15.101 224.000 14.462

116.000 8.726 172.000 15.589 228.000 14.575

120.000 10.230 176.000 16.065 232.000 14.692

124.000 9.899 180.000 14.448 236.000 14.734

128.000 10.822 184.000 15.789 240.000 13.385

132.000 11.034 188.000 15.507 244.000 5.434
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BURNING RATE ANALYSIS
BRLCB V1.0

ADVANCED BALLISTIC CONCEPTS BRANCH - BRL

Project: Liquid Propellant Requested by: William Oberie
Data File: e:lp35.INF Created From .MAS File: IphotMAS
Fired on: 30 May 90 By: Newberry & Aungst
Reduced on: 8 June 90 By: William Oberle
Reduction Remarks:

Conditioned to 140 F for 120 min.

Igniter Information
The Igniter Used Is: IMR 4350 Lot: Unknown
The Source for the Igniter Is: LP Team

Igniter Thermochemical Properties
Impetus (J/g) • 994.1 Molecular Weight : 23.78800
Flame Temperature (K) : 2844.0 Covolume (cm /g) : 1.03685
Density (g/cm3) : .94500 Gamma : 1.24560

Propellant Information
The Propellant Used Is: LP1 846 Lot: 1846-05
The Source for the Propellant Is: LP Team

Propellant Thermochemical Properties
Impetus (J/g) • 900.2 Molecular Weight : 22.84900
Flame Temperature (K) : 2578.0 Covolume (cm /g) • .66700
Density (g/cm 3) :1.45200 Gamma 1.22210

Propellant Grain Geometry
Grain Type: Cigarette

Length (cm): 2.742211
Outer Diam. (cm): 2.700020
Perf Diam. (cm): .000000
Inner WAb (cm): .000000
Outer Web (cm): .000000

Bomb Information Gage Information
Bomb Type: Closed Chamber Gage I.D.: C1 1632
Bomb Vol. (cm3): 73.0 Input Voltage: 4.8530

Constants for Fit: A+Bx+C 2

A: .12701E+01
B: .52094E-01
C: -.16385E-06

Temperature and Charge Mass Information
Propellant Mass (g): 22.8008 Igniter Mass (g): 2.8129
Initial Temp. Prop. (K): 333 Initial Temp. Igniter (K): 294
Initial Bomb Temperature (K): 294
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Table C-3. Bum Rate (cmls) vs. Pressure (MPa) for Shot 26, Conditioned Hot

Pressure Rate Pressure Rate Pressure__ Rate

68.000 3.980 132.000 15.046 196.000 24.991

72.000 4.774 136.000 17.443 200.000 24.734

76.000 3.711 140.000 19.583 204.000 25.160

80.000 5.060 144.000 19.963 208.000 25.326

84.000 5.125 148.000 20.032 212.000 23.535

88.000 6.328 152.000 21.719 216.000 22.703

92.000 7.349 156.000 22.645 220.000 23.532

96.000 7.558 160.000 23.549 224.000 22.995

100.000 7.241 164.000 23.823 228,000 20.229

104.000 8.638 168.000 25.126 232.000 18.232

108.000 9.007 172.000 25.579 236.000 17.738

112.000 10.097 176.000 25.632 240.000 14.586

116.000 10.879 180.000 24.619 244.000 11.791

120.000 12.957 184.000 26.176 248.000 8.411
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